Status of the Landsat and Sentinel 2 Surface Reflectance Product

Eric Vermote¹, Chris Justice², Jean-Claude Roger¹,², Sergii Skakun¹,² and Belen Franch¹,²

¹ NASA Goddard Space Flight Center Code 619
² University of Maryland Department of Geographical Sciences

Eric.f.vermote@nasa.gov

Landsat Science Team Meeting, 26-28 July 2016, Brookings, SD
A Land Climate Data Record
Multi instrument/Multi sensor Science Quality Data Records used to quantify trends and changes

Emphasis on data consistency – characterization rather than degrading/smoothing the data

Landsat Science Team Meeting, 26-28 July 2016, Brookings, SD
Generic Surface reflectance algorithm

The Surface reflectance algorithm relies on

- the use of very accurate (better than 1%) vector radiative transfer modeling of the coupled atmosphere-surface system
- the inversion of key atmospheric parameters (aerosol, water vapor)

Home page: http://modis-sr.ltdri.org

Landsat Science Team Meeting, 26-28 July 2016, Brookings, SD
Generic flowchart for atmospheric correction

- Ancillary (Ozone, Water Vapor, DEM)
- SR reflectances
- TOA reflectances
- AOT Map
- Atmospheric correction
Aerosol inversion

Using the relationship between the blue surface reflectance (490 nm) and the red surface reflectance (665 nm) known from MODIS, we are able to retrieve the AOT.

We loop the AOT until \(\frac{\rho_{\text{surf, blue}}}{\rho_{\text{surf, red}}}_{\text{MSI}} = \frac{\rho_{\text{surf, blue}}}{\rho_{\text{surf, red}}}_{\text{MODIS}} \)

The retrieved AOT is used to compute the surface reflectance at 443 and 2190 nm. The aerosol model is then derived by minimizing the residual.

\[
\text{residual} = \frac{1}{i} \sum_{i=1}^{N} \left(\frac{\rho_{\text{surf, red}}^i}{\text{Ratio}_{665}^i * \rho_{\text{surf, red}}^i} \right)
\]

The computation of surface reflectances for all channels is as follows:

\[
\rho_{\text{surf}} = \frac{Y}{1 + S_{\text{atm}}} \quad \text{with} \quad Y = \frac{1}{T_{\text{atm}} \cdot tg_{\text{wv}}^{\text{TOA}}} \cdot \left(\frac{TOA}{tg_{\text{others}}} \right) \div \left(\frac{\text{atm}}{\text{ray}} \right) \cdot tg_{\text{wv}/2}^{\text{ray}}
\]

Aerosol Opt. Thick. and Aerosol model for each pixel

Surface reflectance for each pixel and each band

\(\rho_{\text{surf}} \) determined (*) using \(\rho_{\text{atm}}, T_{\text{atm}} \) and \(S_{\text{atm}} \) from LUT assuming AOT, Aerosol model and knowing pressure, altitude, water vapor, ozone...

\(\rho_{\text{surf}} \) determined (*) using \(\rho_{\text{atm}}, T_{\text{atm}} \) and \(S_{\text{atm}} \) from LUT knowing AOT, Aerosol model, pressure, altitude, water vapor, ozone...
Methodology for evaluating the performance of surface reflectance

Subsets of Level 1B data processed using the standard surface reflectance algorithm

Comparison

Reference data set

Atmospherically corrected TOA reflectances derived from Level 1B subsets

Vector 6S

AERONET measurements (τ_{aer}, H_2O, particle distribution, refractive indices, sphericity)

http://mod09val.ltdri.org/cgi-bin/mod09_c005_public_allsites_onecollection.cgi

Landsat Science Team Meeting, 26-28 July 2016, Brookings, SD
quantitative assessment of performances (APU) for MODIS

COLLECTION 5: accuracy or mean bias (red line), Precision or repeatability (green line) and Uncertainty or quadratic sum of Accuracy and Precision (blue line) of the surface reflectance in band 1 in the Red (top left), band 2 in the Near Infrared (top right also shown is the uncertainty specification (the line in magenta), that was derived from the theoretical error budget. Data collected from Terra over 200 AERONET sites from 2000 to 2009.
Improving the aerosol retrieval in collection 6 reflected in APU metrics

COLLECTION 6: accuracy or mean bias (red line), Precision or repeatability (green line) and Uncertainty or quadratic sum of Accuracy and Precision (blue line) of the surface reflectance in band 1 in the Red (top left), band 2 in the Near Infrared (top right also shown is the uncertainty specification (the line in magenta), that was derived from the theoretical error budget. Data collected from Terra over 200 AERONET sites for the whole Terra mission.

Landsat Science Team Meeting, 26-28 July 2016, Brookings, SD
Aerosol retrieval also shows improvement

Scatterplot of the MOD09 AOT at 550nm versus the AERONET measured AOT at 550nm for East Coast sites selection: GSFC (top left), Stennis (top right), Walker Branch (bottom left) and Wallops (bottom right).

Landsat Science Team Meeting, 26-28 July 2016, Brookings, SD
Aerosol retrieval also shows improvement

Scatterplot of the MOD09 AOT at 550nm versus the AERONET measured AOT at 550nm for the West Coast sites selection: UCLA (top left), La Jolla (top right), and Fresno (bottom left) and Table Mountain (bottom right).
Aerosol retrieval also shows improvement

Scatterplot of the MOD09 AOT at 550nm versus the AERONET measured AOT at 550nm for a very bright site in Saudi Arabia (Solar Village)

$L = 0.631081x + 0.044126$

$R^2 = 0.880233$

Landsat Science Team Meeting, 26-28 July 2016, Brookings, SD
This Surface Reflectance is applied to Landsat8/OLI and Sentinel 2

The MODIS Collection 6 AC algorithm relies on

- the use of very accurate (better than 1%) vector radiative transfer modeling of the coupled atmosphere-surface system (6S)
- the inversion of key atmospheric parameters
 - Aerosols are retrieved from OLI/Sentinel 2 images
 - Water vapor and ozone from daily MODIS product.

Home page: http://modis-sr.ltdri.org

Landsat Science Team Meeting, 26-28 July 2016, Brookings, SD
The “preliminary” analysis of OLI SR performance in the red band over AERONET is very similar to MODIS Collection 6.

Landsat Science Team Meeting, 26-28 July 2016, Brookings, SD
This is confirmed by comparison with MODIS

<table>
<thead>
<tr>
<th>OLI Band</th>
<th>TM LEDAPS (Claverie et al., 2015)</th>
<th>ETM+ LEDAPS (Claverie et al., 2015)</th>
<th>OLI (Vermote et al., 2016)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A P U</td>
<td>A P U</td>
<td>A P U</td>
</tr>
<tr>
<td>2</td>
<td>7 9 11</td>
<td>9 7 12</td>
<td>2 6 6</td>
</tr>
<tr>
<td>3</td>
<td>1 9 9</td>
<td>6 9 11</td>
<td>3 6 7</td>
</tr>
<tr>
<td>4</td>
<td>9 10 14</td>
<td>1 9 9</td>
<td>1 6 6</td>
</tr>
<tr>
<td>5</td>
<td>5 17 17</td>
<td>3 14 15</td>
<td>2 12 12</td>
</tr>
<tr>
<td>7</td>
<td>1 14 14</td>
<td>5 15 16</td>
<td>9 11 14</td>
</tr>
</tbody>
</table>

OLI surface reflectance APU scores expressed in 10^{-3} reflectance (compared to TM and ETM+ surface reflectance APU by Claverie et al. (2015) using Aqua MODIS BRDF and spectrally adjusted surface reflectance CMG product as reference, the OLI surface reflectance was aggregated over the CMG. Band number corresponds to OLI band number designation and equivalent TM/ETM+ bands were reported.

Landsat Science Team Meeting, 26-28 July 2016, Brookings, SD
Sentinel 2 SR “validation” (6 scenes only)

For the Red channel (Band 4 @ 665nm)

Error on surface reflectance vs. surface reflectance

Landsat Science Team Meeting, 26-28 July 2016, Brookings, SD
Comparison of L8/S2 with MODIS

CMG MODIS product
NDVI aggregated at **CMG resolution**.
summer crops (maize-soy)
Temporal information is now available at the field level

NDVI aggregated at field level (Argentina, S2A tile 20HNH).

Sentinel-2A image acquired on 04-Dec-15, 10m, true color B04-03-02 (SR, scaled 0-0.15)

Landsat-8 image acquired on 04-Dec-15, 30m, true color B4-3-2 (SR, scaled 0-0.15)

MOD09GQ image acquired on 04-Dec-15, 250m, false color B2-1-1, SR

Sentinel-2A image acquired on 23-Jan-16, 10m, true color B04-03-02 (SR, scaled 0-0.15)

Landsat-8 image acquired on 21-Jan-16, 30m, true color B4-3-2 (SR, scaled 0-0.15)
Temporal information is now available at the field level

NDVI aggregated at field level (Argentina, S2A tile 20HNH).

LC8 acquired on **15-Sep-2015** (30m). SR NIR band scaled 0.05-0.55

MODIS/Terra (MOD09GQ) acquired on **15-Sep-2015** (250 m). SR NIR band scaled 0.05-0.55

MODIS/Terra (MOD09GQ) acquired on **16-Sep-2015** (250 m). SR NIR band scaled 0.05-0.55
ACIX: CEOS-WGCV Atmospheric Correction Inter-comparison Exercise (ESA/NASA/UMD)

The exercise aims to bring together available AC processors (actually 14 processors including SEN2COR, MACCS, L8-S2-6SAC, ...) to generate the corresponding SR products.

The input data will be Landsat-8 and Sentinel-2 imagery of various test sites, i.e. coastal, agricultural, forest, snow/artic areas and deserts.

Objectives
To better understand uncertainties and issues on L8 and S2 AC products
To propose further improvements of the future AC schemes

* 1st Workshop in June 21st-22nd @ University of Maryland (by invitation): to elaborate concepts, protocols and guidelines for the inter-comparison and validation of SR products

 Program (with first suggestions) will be provide April 30th (available on the web site for eventual end users feedbacks)

* 2nd workshop in January 2017 (open)

https://earth.esa.int/web/sppa/meetings-workshops/acix

Landsat Science Team Meeting, 26-28 July 2016, Brookings, SD
Conclusions

• Surface reflectance (SR) algorithm is mature and pathway toward validation and automated QA is clearly identified.
• Algorithm is generic and tied to documented validated radiative transfer code so the accuracy is traceable enabling error budget.
• The use of BRDF correction enables easy cross-comparison of different sensors (MODIS, VIIRS, AVHRR, Landsat, Sentinel 2, Sentinel 3…)
• Preliminary Sentinel 2 surface reflectance validation shows good performance but needs a more extensive study