Landsat 9 calibration: New techniques for OLI-2 and TIRS-2

Joel McCorkel
NASA Goddard Space Flight Center
Instrument calibration changes

- **TIRS-2**
 - Class C to B
 - Optical design change (baffles)
 - Subsystem test for wider field characterization

- **OLI-2**
 - Spectral characterization methodology

27 July 2016
Landsat Science Team
TIRS-2 timeline

stray light highlights

• **Dec 2015** – Independent modeling effort begins
 – Reproduced features seen on-orbit with TIRS-1
 – Modeled mitigation baffle performance

• **May 2016** – Pre-PDR Engineering Peer Review for Scattered Light mitigation

• **June 2016** – PDR
 – Form review team for ambient and thermal vacuum stray light testing

• **Aug-Dec 2016** – Ambient testing w/ flight spare, flight telescope

• **June 2017** – Telescope-FPA subsystem testing for wide-field stray light characterization
 – ”TIPCE” test: TIRS Imaging Performace and Cryoshell Evaluation

• **2018** – Instrument level testing
TIRS-1 sneak paths 1of2 (13 deg)
Baffles for stray light reduction

L3 baffle
TIRS-1 sneak paths 2of2 (20 deg)
Baffles for stray light reduction

L2 baffle
Stray light modeling

GSFC & Independent (SDL) models agree

Conditions:
1) SCA-C Band 11 used in the analysis
 - 0.9 mm x 16 mm area used in the analysis
 - Results represent average detector pixel
 - $\tau_{\text{sys}} = 1$ for analysis
2) Source angle is referenced to boresight
3) Optical surface scatter models
 - Analysis wavelength 10.6 µm
 - Mirror/Lens: ~15.5Å surface roughness
 - Contamination: Level 300
4) Lens Cell: Black Anodize (sandblasted)
5) 40K, 80K, and telescope shields: Z307

Source Angles

$\varphi = -90^\circ$
$\theta = 1^\circ - 27^\circ$
TIRS-2 subsystem-level “TIPCE” testing

Instrument level

Telescope-FPA subsystem level

+26°
TIRS-2 Schedule

<table>
<thead>
<tr>
<th>TIRS-2 Schedule Integration & Test</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument Reviews</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IHR 11/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDR 06/16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBD CDR 02/17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBR 08/17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBD PER 06/18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delivery 08/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibration / CalGSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATK Activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flood Source Characterization</td>
<td>12/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Develop / Test Scripts (tipce)</td>
<td>2/28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Develop / Test Scripts (tvac)</td>
<td></td>
<td>1/17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Focus Testing Configuration H/W</td>
<td>7/31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryo-Subsystem TVAC Cold Plates, Heater Plates & Cryopanel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instr. TVAC Cold Plates, Heater Plates & Cryopanels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STE Modifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIPCE Prep</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIPCE Testing</td>
<td>5/23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPE/FIB Post Ship</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCE Post Ship Checkout</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEB Activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensor Unit Build-up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrate Electrical Pallet to Sensor Unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrument Check-out</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-TVAC/Pre-ship Activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funded Schedule Margin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enviro Dates:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 - TVAC 01 - 8/14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 - EMI / EMC - 9/26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 - Vibe / Acoustics - 10/25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 - TVAC 02 - 1/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ship</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

27 July 2016
Landsat Science Team
GLAMR for OLI-2
spectral characterization

Goddard Laser for Absolute Measurement of Radiance
Detector and laser-based calibration for next gen accuracies

• Future process and climate sensors have increasingly more stringent sensor responsivity calibration requirements
 – **PACE** has 2% laboratory calibration uncertainty requirement
 – **CLARREO** has a 0.3% requirement for reflectance

• Traditional sensor characterization methods do not meet these requirements – the solution lies in
 – More advanced instrument models
 – Appropriate parameterization of these models, i.e. use appropriate light source for instrument testing
 – Detector-based standards providing 0.09% k=2 radiometric uncertainty
Why laser-based calibration?

...because photons go everywhere

Example is the ASTER focal plane:

Example of two types of imagers:

Multispectral pushbroom/whiskbroom

Landsat, MODIS, VIIRS

Imaging Spectrometer

JPL: AVIRIS-ng, NEON, Carnegie, M3 TacSat-3 ARTEMIS CLARREO Pathfinder

White light is focused

Focused light is spectrally separated
GLAMR is required for improving instrument model parameterization

- Stray/scattered light
- Spectral/radiometric response
- Linearity
- Crosstalk
- Detector-to-detector differences
Stabilized laser source is used to transfer radiometric scale from POWR to portable transfer radiometer via another standard radiometer.
Laser system:
Goddard Laser for Absolute Measurement of Radiance

GLAMR

LBO OPOs
JPSS-2 VIIRS testing with GLAMR begins Aug 2, 2016
The GLAMR-ous Future

NIST

2000
Method and traceability development

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

NIST-NASA partnership

NASA

G-LiHT
Goddard’s Lidar Hyperspectral & Thermal Imager

RSP
Research Scanning Polarimeter

eMAS-h
Enhanced MODIS Airborne Simulator

GLAMR will be one of tools that takes these missions to climate accuracies