NASA SLI-Technology Studies

Jeff Masek, NASA GSFC
July 26, 2016
Background

• 2014: NASA/USGS Architecture Study Team (AST) examined options for long-term mission architectures
 • Based on LST feedback, emphasized opportunities for smaller observatories
 • Smaller platform => lower cost => higher launch cadence & constellation formation => more frequent imaging
 • Enables SLI launch as secondary payload (cost reduction)
 • Other options included
 • Migration of SLI to hyperspectral capability
 • Reliance on international systems (e.g. Sentinel-2) for reflective multispectral continuity

• 2014-15: Reduced Instrument Envelope Size (RIES) Studies
 • Funded six companies to pursue small instrument concepts that could meet Landsat-8 requirements (+ 60m TIR)

• 2016: NASA Earth Science Technology Office (ESTO) ROSES Solicitation
SLI Reduced Envelope Study

- SLI funded six contracts to study options for reducing VSWIR/TIR instrument size
 - Goal of 50x50x50cm volume, 50W, 50kg, with L8 specs (and 60m TIR)
 - Contractors asked to explore design concepts, identify driving requirements, consider technologies that are likely to be available in the Landsat 10 era
 - Disaggregation of TIR and VSWIR could be considered

- Awards made to:
 - Ball Aerospace & Technologies Corporation of Boulder, CO
 - Exelis Inc., Geospatial Systems of Fort Wayne, IN
 - Lockheed Martin Space Systems Company of Greenbelt, MD
 - Northrop Grumman Systems Corporation, Aerospace Systems of Redondo Beach, CA
 - Raytheon Company of El Segundo, CA
 - Surrey Satellite Technology US LLC of Englewood, CO

- 6-month studies complete March 2015 (with subsequent follow-on studies)
General REIS Findings

• The 50/50/50 target was not realistic, but many designs approached the volumetric goal (<1m3 designs are feasible).
 – Both single- and multiple-instrument approaches
 – Small, fast optics
 – Smaller pitch detectors
 – Variety of scanning modes possible (pushbroom, push-whisk, step-stare...)
 • 15° Field of view requirement limits telescope choices for a pushbroom; Whiskbroom scanners could use smaller FOV telescope designs
 – Compact fast telescope designs may be susceptible to stray light, and increased AOI variation on focal plane

• Edge Slope Response (~Point Spread Function) at longest wavelength (2.2 or 12 μm) drives aperture requirements and overall instrument size
 – Techniques exist to reduce the diffraction dictated apertures at the expense of data rate, SNR, and edge response ring.
 • FPA Oversampling
 • Detector geometries
 • MTF compensation in re-sampling algorithms (aka sharpening filters)

• Onboard calibration does not generally drive instrument size
ESTO ROSES 2015 Solicitation

• Proposals to advance SLI goals through technology development

• Two types of proposals solicited
 – Advanced Technology Demonstrations
 • Instrument prototypes and demonstrations
 • 3-4 awards with up to $4.8M program budget (year 1)
 • 1-5 year awards
 – Technology Investments
 • Component or breadboard demonstrations of new technologies that could be infused in future land imaging instruments
 • 3-4 awards with up to $1.2M program budget (year 1)

• Reference Mission Architecture (based on Landsat-8) provided in solicitation

• Selections pending (likely August 2016)
General Technology Concepts

• Compact multispectral instruments
 – Pushbroom, Push-whisk, Step-stare
 – Wide FOV for better than 16-day coverage (e.g. ACMS)

• Hyperspectral systems
 – Grating (Ofner, Dyson)
 – Prism

• Near-term Components
 – Tactical cryocoolers
 – New detectors & arrays
 – Alternative calibration sources

• Advanced imaging technology
 – Optical interferometry
 – Waveguide optical systems
SLI-T Strategy FY16/17/21

FY15 Studies

ROSES 1 (FY16)
- System (Vis/SWIR/TIR)
 - 20% Subsystem
 - 80% Subsystem
 - ($10-$15M) 2-4 Engineering Models
 - EVI, EVM, EVS
 - L9 (2020)

ROSES 2 (FY17)
- Subsystem

ROSES 3 (FY21)
- System (Vis/SWIR/TIR)
 - 20% Subsystem
 - 80% Subsystem
 - ($15-$20M)
 - L10 (2027)

Other:
- L9 (2020)
- L10 (2027)
- L11 (2034)

for Landsat (next +1)
for Landsat (next +2)
Architecture Considerations

• Curtis: Have the technology studies to date eliminated any potential architecture or measurement concept for L10?
 – Not really. Very small cubesats (<=6U) probably not feasible, but other smallsat concepts are possible
 – Compact VSWIR and TIR imagers can be built that satisfy L8/L9 requirements
 – Compact hyperspectral imagers appear feasible with a few caveats
 • Stray light from grating systems difficult to predict
 • 10nm wavelengths may not “phase” with L8 30nm bandpasses
 • Required hyperspectral SNR may require aggregation to ~60m for compact system

• Key issues for future SLI mission architecture
 – What VSWIR enhancements are desired or required? What are their benefits relative to the existing capability? Can these be prioritized so that trades can be performed?
 – What is the appropriate role for Sentinel-2 in improving temporal frequency?
 – What frequency and resolution is required/desired for TIR observations?
 – Is there a community need/desire for hyperspectral data?