USGS Management Update

Tim Newman
USGS National Land Imaging
Program Coordinator
8 August 2018

Pete Doucette
USGS National Land Imaging
Associate Program Coordinator
USGS National Land Imaging Program

Satellite Operations
Develop and operate systems to acquire, produce, preserve, and deliver products and services to meet civil Earth observation research and operational requirements

- Collect, archive, process & disseminate Landsat & Landsat-like data (Landsat 1-8, S-2)
- Operate the Landsat 7 and 8 satellites, calibrate and validate the incoming data
- Develop the Landsat 9 ground system in concert with NASA for 2020 launch
- Collect, maintain and analyze user requirements; inform 2019 Landsat 10 decision

Science, Research & Investigations
Conduct science, research and technology investigations to improve upon and develop new products and services

- Applied science & applications, including drought monitoring, global cropland estimates
- Remote sensing research and development, including unmanned airborne systems

Manage National Civil Applications activities

- Provide National Security Space system geospatial data supporting USGS applications
- Facilitate Federal civil agency use of these systems via Civil Applications Committee

Fundamental goal: Ensure public availability of a primary data record about the current state and historical condition of the Earth’s land surface
USGS National Land Imaging Budget

2018 Enacted Budget restored 2018 President’s Budget proposed reductions
• Satellite Operations funding
 • L7/8 Flight & Ground ops, L9 development, L-10 Requirements work, EROS Archive and new products
• Science Research & Investigations funding
 • Includes Education & Outreach Grant

2019 House & Senate Budget Marks* restore 2019 President’s Budget proposed reductions
• Satellite Operations funding matches 2018 Enacted Budget AND adds requested L9 increase
• Science Research & Investigations funding is level

*But this has not yet become law
Landsat Operations and Development Status

Landsat 7 (1999-)
- Collecting about 475 new scenes per day; latest fuel estimate projects operating into 2021.

Landsat 8 (2013-)
- Collecting up to 725 new scenes per day; together with Landsat 7 supports 8-day revisit.

Landsat 9 (December 2020 launch)
- Essentially a copy of Landsat 8, but with important improvements for accuracy and resiliency
- Upgrade to fully Class B (Thermal IR instrument was a Class C instrument on Landsat 8); 14-bit data

Landsat 10 (~2025-2030 launch)
- Technology and user needs studies underway to support an architecture study to commence later this year.
- Everything is on the table at this point (e.g., smallsats, hyperspectral, data buys, Public-Private Partnerships).
Landsat Data Policy Study for 2018

- Landsat Advisory Group (LAG) Task topic title: “Considerations of cost sharing models for Landsat data”

- DOI leadership is seeking to better understand economic and data policy considerations and impacts in relation to user needs, as well as the potential for public-private partnering (“P3”), with respect to various cost sharing models for Landsat data.

- The “fee recovery” issue has been looked into as recently as 2012 by the LAG—that paper can be found online at the NGAC website.

- This represents a good opportunity to inform current leadership on a number of Landsat data policy issues, in particular, the interplay with ESA’s adoption of a free and open policy for Sentinel.

- NLI’s position is to support an objective investigation by the LAG.

- Feedback and information: Email account (Landsatdatapolicy@usgs.gov) and FAQ section on EE website.
NLI Program Priorities for 2018-2019

- Inform Landsat 10 design and development via NASA-USGS Architecture Study Team
- Maintain operational continuity of Landsat 7 and Landsat 8
- Keep pace with NASA on Landsat 9 development
- Define and prepare for Global Analysis Ready Data (ARD)
- Obtain operational status and productivity from Land Change Monitoring, Assessment, and Projection (LCMAP)
- IT modernization for Landsat data leveraging commercial cloud
- Continue working toward Landsat/Sentinel-2 harmonization
- Investigate UAS and small satellite capabilities, Landsat synergies
- Release of new Landsat user survey, OSTP National Plan for Civil Earth Observations/Earth Observations Assessment (EOA) 2016 results synopsis
- Ensure future commercial data buys include civil agency requirements and favorable licenses
- Expand RCA scope to include all civil high and low resolution requirements
Sustainable Land Imaging (SLI)

- Collaboration between NASA and DOI/USGS that enables the development of a multi-decade, spaceborne system that will provide users worldwide with high-quality, global, land-imaging measurements compatible with the existing 45+ year record
 - Landsat 9 is the first SLI Mission
 - NASA and DOI/USGS to collaborate in developing program strategy and architecture, identifying user needs, and defining mission requirements
 - SLI Joint Steering Group – Chaired by NASA Associate Administrator for Science and Interior Assistant Secretary for Water & Science – will meet periodically to coordinate and integrate SLI efforts, and to enable overall program strategy generation and approval

- Under the SLI program, NASA and DOI will continue to work together to ensure sustained access to land remote-sensing observations for U.S. research and operational users
 - **Space systems**-- NASA will maintain responsibility for developing, launching and checking out space systems on-orbit before transferring to USGS for operations
 - **Ground systems**-- DOI/USGS will be responsible for developing and maintaining, to include operating the on-orbit spacecraft, and collecting, archiving, processing and distributing SLI systems data to users
Landsat 10 Planning under SLI

- Under SLI, USGS is working with NASA on early Landsat 10 planning activities, including requirements and technology development, to reduce cost and risk in future missions
 - USGS is partnering with Federal agencies and others to document the uses of and requirements for land imaging data
 - NASA is conducting instrument reduction studies, business model studies and other technology investigations to reduce cost and risk in next-generation Landsat missions
- USGS and NASA will continue requirements and technology activities and work together on a post-Landsat 9 Architecture Study in 2018-2019, leading to an initial decision as early as 2019 on the post-Landsat 9 system architecture, with launch in the mid-late 2020s
 - Everything is on the table at this point
 - Measurements must enable backward and forward assessments

Future Landsat systems need to ensure Earth Observation Continuity; USGS and NASA are open to new technologies, business approaches
USGS User Needs

• Mod-res land imaging needs from Federal civil subject matter experts representing >150 science and operational applications
• Major findings:
 – At a minimum, users need continuity of Landsat data and derived products with free and open data access
 – To better perform their work, users need weekly clear observations; 10m spatial resolution for VNIR/SWIR and 10-30m for thermal; additional/narrower spectral (VNIR/SWIR/TIR) bands
 – Ideally, users need contiguous 10nm-wide VNIR/SWIR bands and more (5-8) thermal bands
 – Observation frequency is the most limiting factor; then spatial resolution
• Federal needs are similar to non-Federal needs
• Needs are maintained in USGS databases that can be dynamically sorted, visualized, and compared to capabilities to support Architecture Study Team (AST) trade studies
Land Imaging AST Charge

- Define a global, Sustainable Land Imaging (SLI) system for a 20-year period starting in 2018
- Provide cost effective options for near-term capabilities, continuity risk mitigations, technology infusion
- Consider refined capabilities requested by the user communities
- Include new measurement approaches & potential international and private sector partnerships

AST Study Process

- Established study trade space via expert knowledge, intensive AST discussions, and RFI responses
- Explored alternatives via several design cycles

Key AST Finding → Landsat 8 rebuild for Landsat 9 had the lowest technical risk

- Consistent with Congressional and Landsat community desires
- Enables several years for SLI to prepare for efficient implementation of future technologies
- Direct data continuity with Landsat 8

Phase 1 of the first AST started with ~500 architectures

Next SLI AST will begin this year, building upon results of the first AST while factoring in new requirements & space capabilities, as well as private sector roles
2013-2014 Architecture Study Team (AST)

• The Landsat Science Team (LST) was consulted for its insights into past, current and desirable future capabilities
 – Statement on **Data Continuity**
 – Statement on **Sentinel-2**
 – Feedback on **near-term options** (TIR gap-filler or delayed full spectrum)
 – Feedback on **long-term options** (high revisit or hyperspectral)

• **LST overwhelmingly supported goal of more frequent, multispectral data sets**
 – Improved ability to **defeat cloud cover** and use “every clear pixel”
 • Critical for mapping of land cover, vegetation change in cloudy areas
 – **Intra-annual spectral changes** (e.g. phenology) seen as key for mapping vegetation type and condition
 – **More frequent revisit** advances hydrological and cryospheric applications, where conditions change daily to weekly
 – LST noted that hyperspectral data essential for specific applications (e.g. ecosystem physiology & chemistry, species-level compositional mapping, etc.), and provide potential for physically-based modeling of ecosystem function
SLI Architecture Study Tradespace

• Utilize exiting and future capabilities of the international and private sectors
 – ESA Sentinel-2 missions are expected to operate well into the 2030’s
 – India’s space agency has a long-running Earth observing program
 – Planet, Digital Globe and other commercial firms are continuing to improve their capabilities and products
 • The Joint Agency Commercial Imagery Evaluation (JACIE) collaboration continues to monitor and assess commercial offerings

• Improving Technology
 – More capability on smaller satellites to reduce the space segment costs
 – Develop improved “lossless” compression to reduce data volume, and store and deliver products
 – Improved product offerings and packaging to reduce product sizes
 • User-defined areas of interest, spectral subsets, information products
 – Utilization of commercial cloud provider resources to house, process and disseminate basic and higher-level products to users
What are the Major Steps in an EO mission?

- User Needs Assessment
- Architecture Study
- Mission Concept
- System Acquisition Strategy
- Contract Award
- Mission Requirements
- Mission/Instrument Design
- Mission/Instrument Build
- Instru. Characterization/Cal
- System Integration and Test
- Mission Launch
- Mission Operations
- Science Data collection
- Data Quality
- Archiving
- Product Production and Distribution
- Ground Sys. Requirements
- Ground Sys. Design
- Ground Sys. MOC Build
- Ground Sys. Science Sys Build

Mission Ops
Ground Station
Data Processing
NLI Program Guidance to LST 2018-2023

- **Contribute to AST assessment for L-10**
 - Trade space recommendations for science
 - Radiometric sensitivity analyses
 - Impacts of error propagation from lower to higher level products

- **Contribute to Landsat harmonization with other remote sensing data**
 - Landsat / Sentinel-2 spatial and spectral
 - Commercial smallsats and Unmanned Aerial Systems
 - Techniques to exploit Landsat quality with lower-radiometric quality/higher spatial and/or temporal resolution systems
 - Future sensor assessments
 - Spectra Processing, Band aggregation, Advanced Processing
NLI Program Guidance to LST 2018-2023

- **Advancing time-series/LCMAP R&D**
 - Time-series tools
 - Product generation with uncertainty propagation quantified
 - Extending to a data cube concept

- **Water Quality Assessment**
 - Optimize exploitation of L8/L9 signal-to-noise ratio and spectral bands for water application