Landsat 5 reflectance and NDVI
27-year time series inconsistencies due to satellite orbit change

Hankui K. Zhang and David P. Roy
Geospatial Sciences Center of Excellence, South Dakota State University,
Brookings, SD 57007, USA
Lots of Remote Sensing Systems launched since 1972

Landsat-1

Landsat-5

Belward and Skøien, 2014
- 9:45 a.m Mean Local Time of Descending Node (MLTDN)
 - *initially* orbit maintained by periodic station keeping maneuvers to maintain ground track and orbit phase with Landsat 4
 - *initially* MLTDN required to not vary by more than ±15 minutes of 9:45 a.m
Landsat 5 local overpass time example

(path 27 row 42 somewhere in Texas)

- **9:45 a.m** Mean Local Time of Descending Node (MLTDN)
 - *initially* orbit maintained by periodic station keeping maneuvers to maintain ground track and orbit phase with Landsat 4
 - *initially* MLTDN required to not vary by more than ±15 minutes of 9:45 a.m
Nadir view Reflectance varies with solar zenith

$SZ=65°$, more shadow, lower ρ_{red}

$SZ=40°$, less shadow, higher ρ_{red}

NDVI vs Solar Zenith (Pinter 1993, RSE)

- **New Regrowth Alfalfa**
 - $(82 \pm 10 \text{ g m}^{-2})$

- **Lush Growth Alfalfa**
 - $(185 \pm 16 \text{ g m}^{-2})$

- **Mature Alfalfa**
 - $(280 \pm 31 \text{ g m}^{-2})$

- **Bare Soil & Litter**
 - (0 g m^{-2})
Can we see Landsat 5 orbit drift effects in TM images?

Consider:
- 3 sites (Vogelmann et al. 2016 RSE), Crater Lake National Park, Oregon

At each site:
- 9 adjacent 30m pixels
- 12 L1T Landsat 5 cloud-free images spanning 1991-2010
- Atmospherically corrected
- Summer anniversary date images (no more than ±5 days of Sep. 1)
3 SITE TIME SERIES

Blue: sparsely vegetated pumice desert

Green: coniferous forest with gradual NDVI increase

Orange: coniferous forest with gradual NDVI decrease

Open circles - 9 individual pixel values

Solid colored lines - median of 9 pixel values
Landsat 5 TM local overpass times
for 2 sites same path but different rows
2011 reference overpass time (red dots)
2011 reference overpass time and solar zenith
based on 12 months of non-Antarctic Landsat metadata values

\[t_{\text{local}} = 1.36292 \times 10^{-9} \alpha^5 - 3.15403 \times 10^{-8} \alpha^4 - 3.15819614 \times 10^{-6} \alpha^3 + 0.0000652685643 \alpha^2 + 0.0120604786763 \alpha + 10.06 \]

where \(\alpha \) is latitude

\[22.14^\circ \leq \theta_s \leq 89.71^\circ \quad \theta_s \text{ mean} = 43.23^\circ \]

\[\text{2011 reference} = f(t_{\text{local}}, \text{date}, \text{latitude}) \]

Minnesota $\theta_{\text{observed}} - \theta_{2011 \text{ reference}}$

Max = 5.9°

Green: summer difference values

Texas $\theta_{\text{observed}} - \theta_{2011 \text{ reference}}$

Max = 11.2°
Modeling the reflectance impacts of overpass time and solar zenith change over 27 years

\[NBAR_{obs,\lambda} = f(\theta_{s=obs}, \theta_{v=0}, \text{MODIS BRDF parameters for } \lambda) \]

\[NBAR_{reference,\lambda} = f(\theta_{s=2011\text{reference}}, \theta_{v=0}, \text{MODIS BRDF parameters for } \lambda) \]
consider different mean CONUS land cover MODIS BRDF parameters

Minneapolis path/row

modeled NBAR difference

NBAR_{obs} \quad NBAR_{2011 \ reference}

closed shrubland class
Texas path/row

modeled NBAR difference

\[\text{NBAR}_{\text{obs}} \quad \text{NBAR}_{\text{2011 reference}} \]

closed shrubland class

Green: modeled NBAR difference
summer images only
Minnesota path/row

modeled NBAR difference

$NBAR_{obs}, \quad NBAR_{2011\, reference},$

closed shrubland class
Texas path/row

modeled NBAR difference

\(\text{NBAR}_{\text{obs}}, \quad \text{NBAR}_{\text{2011 reference}} \)

closed shrubland class

Green: modeled NBAR difference
summer images only
Texas path/row

modeled NBAR difference

$NBAR_{obs}$, $NBAR_{2011}$ reference,
closed shrubland class

[Graph showing local time vs. year with data points and trend lines for NBAR and NDVI differences over the years 1985 to 2010.]
Conclusions

• Landsat 5 orbit changed considerably over 27 year life
 – Overpass time changed by up to ~1 hour (>> ±15 mins of 09:45 AM MLTDN)
 – Solar zenith changed by >10°

• Can see orbit shift in actual Landsat 5 time series

• BRDF modeling findings
 – 27-year NDVI change trend 0.0006 NDVI/year, small but not insignificant
 – Comparing certain years, i.e., 1995 and 2007 may not be a good idea
 • NDVI$_{1995}$ 0.11 > NDVI 2007 for anisotropic land cover types
 • NDVI 1995 0.05 > NDVI 2007 for average CONUS land cover types

• Further research to develop a Landsat BRDF normalization approach for Landsat 5 orbit drift changes is recommended

• Zhang, H.K and Roy, D.P., Landsat 5 Thematic Mapper reflectance and NDVI 27-year time series inconsistencies due to satellite orbit change, RSE, In review
Global WELD NEX Version 3.0 September 2009 30m product from 15,058 L1T scenes (7,328 Landsat 5 & 7,730 Landsat 7)

Sinusoidal Equal Area Projection
WELD Landsat 5 & 7 modeled Solar Zenith used to derive WELD NBAR

Global WELD NEX Version 3.0 September 2009 30m product from 15,058 L1T scenes (7,328 Landsat 5 & 7,730 Landsat 7)

Sinusoidal Equal Area Projection
Minnesota (path/row 27/26) modeled NBAR reflectance and NDVI using the fixed 12 month mean CONUS (blue) and closed shrubland class (red) spectral BRDF model parameters and setting the solar zenith to θ_{observed}.
Same as above but for Texas (path/row 27/42)
Satellite orbit can change significantly over its life time.
Black dots: $\theta_{reference}$ plotted every 16 days for the 2011 Landsat acquisition dates.
Black dots: $\theta_{\text{reference}}$ plotted every 16 days for the 2011 Landsat acquisition dates.