


Bater, C.W., Wulder, M.A., White, J.C., and Coops, N.C., 2010, Integration of LIDAR and digital aerial imagery for detailed estimates of lodgepole Pine (Pinus contorta) volume killed by mountain


Campagnolo, M.L., Sun, Q., Liu, Y., Schaaf, C., Wang, Z., and Román, M.O., 2016, Estimating the effective spatial resolution of the operational BRDF, albedo, and nadir reflectance products from MODIS.


Deo, R.K., Russell, M.B., Domke, G.M., Andersen, H.E., Cohen, W.B., and Woodall, C.W., 2017, Evaluating site-specific and generic spatial models of aboveground forest biomass based on landsat Time-
Series and LiDAR strip samples in the Eastern USA: Remote Sensing, v. 9, no. 6, at http://dx.doi.org/10.3390/rs9060598.


Dwyer, J.L., and Schmidt, G.L., 2006, The MODIS reprojection tool, in Qu, J.J., Gao, W., Kafatos, M., Murphy, R.E., and Salomonson, V.V., eds., Earth science satellite remote sensing—data,


Förster, M., Schmidt, T., Gärtner, P., Kleinschmit, B., Gao, F., and Möller, M., 2015, Evaluating the temporal stability of synthetically generated time-series for crop types in Central Germany, in


of Electrical and Electronics Engineers (IEEE), p. 1291–1294, at http://dx.doi.org/10.1109/IGARSS.2007.4423042.


Jiao, T., Williams, C.A., Ghimire, B., Masek, J., Gao, F., and Schaaf, C., 2017, Global climate forcing from albedo change caused by large-scale deforestation and reforestation—Quantification and


Johnson, L., Nemani, R., Melton, F., Michaelis, A., Votava, P., Wang, D., and Trout, T., 2010, Information technology supports integration of satellite imagery with irrigation management in California’s...


Liu, Y., Sun, Q., Wang, Z., Schaaf, C., and Erb, A., 2016, Evaluation of VIIRS daily BRDF, albedo, and NBAR product using the MODIS Collection V006 product and in situ measurements, in International


Mejia, J.F., Niswonger, R.G., and Huntington, J., 2014, Uncertainty transfer in modeling layers—From GCM to downscaling to hydrologic surface-groundwater modeling, in Ames, D.P., quinn, N.W.T.,


Möller, M., Gerstmann, H., Thurkow, D., Gao, F., and Förster, M., 2015, Coupling of phenological information and synthetically generated time-series for crop types as indicator for vegetation coverage information, in Analysis of Multitemporal Remote Sensing Images (Multi-Temp), International Workshop, 8th, Annecy, France, 22–24 July 2015, Proceedings: Piscataway, N.J., Institute of Electrical and Electronics Engineers (IEEE), article number 7245802, at http://dx.doi.org/10.1109/Multi-Temp.2015.7245802.


Pagnutti, M., Blonski, S., Cramer, M., Helder, D., Holekamp, K., Honkavaara, E., and Ryan, R., 2010, Targets, methods, and sites for assessing the in-flight spatial resolution of electro-optical data


baseline in community structure: PLoS ONE, v. 5, no. 8, article number e11938, at http://dx.doi.org/10.1371/journal.pone.0011938.


Roy, D.P., Li, Z., and Zhang, H.K., 2017, Adjustment of sentinel-2 multi-spectral instrument (MSI) red-edge band reflectance to nadir BRDF adjusted reflectance (NBAR) and quantification of red-edge band BRDF effects: Remote Sensing, v. 9, no. 12, at http://dx.doi.org/10.3390/rs9121325.


Schott, J.R., Gerace, A., and Montanaro, M., 2012, Simulation of the performance and image quality characteristics of the Landsat OLI and TIRS sensors using DIRSIG, in Meynart, R., Neeck, S.P., and


Shuman, C., Scambos, T., and Berthier, E., 2016, Ice loss processes in the Seal Nunataks ice shelf region from satellite altimetry and imagery: Annals of Glaciology, v. 57, no. 73, p. 94–104, at http://dx.doi.org/10.1017/aog.2016.29.


Yeo, I.Y., Lang, M., and Vermote, E., 2013, Improved understanding of suspended sediment transport process using multi-temporal Landsat data—A case study from the Old Woman Creek Estuary


Geophysical Research D—Atmospheres, v. 117, no. 17, citation number D18213, at http://dx.doi.org/10.1029/2012JD017723.


Zhu, Z., Bi, J., Pan, Y., Ganguly, S., Anav, A., Xu, L., Samanta, A., Piao, S., Nemani, R.R., et al., 2013, Global data sets of vegetation leaf area index (LAI3g) and fraction of photosynthetically active radiation (FPAR3g) derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3G) for the period 1981 to 2011: Remote Sensing, v. 5, no. 2, p. 927–948, at http://dx.doi.org/10.3390/rs5020927.


