

USGS Landsat Data Continuity Mission (LDCM) Landsat 8 Cloud Cover
Algorithm (CCA) and C Language Function of Mask (CFMask) Cloud Cover
Assessment Algorithm Description Document (ADD)

CCA – CFMask

Background/Introduction

CFMask is the C language version of the Function of Mask algorithm; a cloud cover

assessment (CCA) algorithm originally researched at Boston University and developed

further at EROS. CFMask is a multi-pass algorithm that uses decision trees to

prospectively label pixels in the scene, then validates or discards those labels according to

scene-wide statistics.

CFMask is attractive as a solution to Landsat cloud masking because of its high accuracy

and inclusion of a cloud shadow detection algorithm. Refinements in CFMask include

the ability to operate without thermal data, the ability to use cirrus band data, and variant

algorithms that allow it to run on data from several Landsat-like instruments.

The output of CFMask is an intermediate CCA mask which can be used to create the final

scene QA mask.

Inputs

Descriptions Data

(Units)

Level Source Type

Reflectance band scene data, as

TOA reflectance

Reflectance

(None)

Scene, OLI

bands 2-7, 9 or

TM/ETM+

bands 1-5 and

7.

 float

Thermal band scene data, as TOA

Brightness Temperature

Brightness

Temperature

(Celsius)

Scene, OLI

TIRS Band 1

or TM/ETM+

band 6

 float

Scene Elevation image meters Scene DEM long

Outputs

Each component of CFMask – fill, water, cloud shadow, snow/ice, cloud and/or cloud

confidence could potentially be assigned as values (0, 1, 2, etc.) or as bits (00, 01, 10, 11)

depending on the needs of downstream application(s).

Prototype Code

The current CFMask code exists in the GitHub repository at https://github.com/USGS-

EROS/espa-cloud-masking/tree/master/cfmask.

Procedure

CFMask involves several passes. In each pass, the algorithm evaluates each non-fill pixel

in the scene.

1. Pre-defined variables

a. t_buffer = 4.0

b. cloud_prob_threshold = 22.5

2. Pass 1 – Basic tests. For each pixel in the scene...

a. If any satellite other than Landsat 8, if this pixel is at the TOA saturation

value for any band, set that band's pixel value to the TOA maximum

value.

b. Calculate NDVI and NDSI.

i. NDVI = (r – nir)/(r + nir) (If r+nir == 0, set NDVI = 0.01)

ii. NDSI = (g – swir1)/(g + swir1) (If g+swir1 == 0, set NDSI =

0.01)

c. If any visible band (b, g, r) is saturated, mark pixel as saturated.

d. Perform Basic Cloud Test.

i. If (NDSI < 0.8

 and NDVI < 0.8

 and swir2 > 0.03), then positive result.

ii. If result is positive and not using thermal,

 then mark pixel as cloud.

iii. If result is positive and using thermal,

 and thermal < 27C,

 then mark pixel as cloud.

e. If pixel is marked as cloudy...

i. Perform whiteness test.

1. Calculate Visible Mean

a. visi_mean = (b + g + r)/3.0

2. Calculate Whiteness

a. If (visi_mean = 0.0) then whiteness = 100.0

b. If any satellite other than Landsat 8, and any visible

band (R, G, B) is saturated, then whiteness = 0.0.

Also set a saturation flag (satu_bv) that will be used

in the HOT tests.

https://github.com/USGS-EROS/espa-cloud-masking/tree/master/cfmask
https://github.com/USGS-EROS/espa-cloud-masking/tree/master/cfmask

c. Else, whiteness = (abs(b + g + r –

visi_mean))/visi_mean

3. If pixel is marked as cloud and whiteness >= 0.7, then mark

this pixel as clear.

ii. Perform Haze Optimized Tests (HOTs).

1. If ((b – r/2) <= 0.08) and the pixel is not saturated (satu_bv

is 0), then mark this pixel as clear.

2. If (swir1 is not 0.0) and (nir/swir1 <= 0.75), then mark this

pixel as clear.

f. If using the cirrus band, if (cirrus/4.0 > 0.0025) then mark this pixel as

cloud.

g. Perform Basic Snow Test.

i. If (NDSI > 0.15

 and nir > 0.11

 and g > 0.1)

 then result is positive.

ii. If result is positive and not using thermal,

 then mark pixel as snow.

iii. If result is positive and using thermal,

 and thermal < 10,

 then mark pixel as snow.

h. Perform Basic Water Test.

i. If (NDVI < 0.01 and nir < 0.11)

 or (NDVI < 0.1 and NDVI > 0.0 and nir < 0.05)

 then mark pixel as water.

i. If pixel is not cloud, increment the Clear Count.

i. Set pixel's clear_bit.

ii. If pixel is water and not cloud, increment the Clear Water Count.

1. Set pixel's clear_water_bit.

iii. If pixel is not water and not cloud, increment the Clear Land

Count.

1. Set pixel's clear_land_bit.

3. Calculate Clear and Water Statistics.

a. Calculate clear percentage.

i. clear_ptm = Clear Count / Total Non-Fill Image Pixels.

b. Calculate clear water percentage.

i. water_ptm = Clear Water Count / Total Non-Fill Image Pixels.

c. Calculate clear land percentage.

i. land_ptm = Clear Land Count / Total Non-Fill Image Pixels.

d. If clear_ptm <= 0.1, then assume the entire scene is cloudy or cloud

shadowed.

i. Mark all non-cloudy pixels in scene as cloud shadow.

ii. Mark all cloudy pixels in the scene as high-confidence cloud.

iii. If using thermal, then disable the thermal thresholds:

1. Set t_templ = -1.0

2. Set t_temph = -1.0

e. If land_ptm >= 0.1 then expect clear land.

i. Set land_bit = clear_land_bit.

ii. else set land_bit = clear_bit.

f. If water_ptm >= 0.1 then expect clear water.

i. Set water_bit = clear_water_bit.

ii. else set water_bit = clear_bit.

4. Pass 2 – Calculate Temperature Statistics. For each pixel in the scene...

a. If any satellite other than Landsat 8, if this pixel is at the TOA saturation

value for any band, set that band's pixel value to the TOA maximum

value.

b. If pixel is land and using thermal, calculate land brightness temperature.

c. If pixel is water and using thermal, calculate water brightness temperature.

d. While calculating brightness temperatures, remember the minimum and

maximum land brightness temperatures and the minimum and maximum

water brightness temperatures in the scene. Also keep tallies of the

number of land pixels and water pixels.

e. If there are no clear land pixels, set minimum and maximum land

temperature to zero.

f. If there are no clear water pixels, set minimum and maximum water

temperature to zero.

5. If using thermal, calculate temperature percentiles.

a. t_templ = 17.5% percentile land temperature – t_buffer

b. t_temph = 82.5% percentile land temperature + t_buffer

c. t_wtemp = 82.5% percentile water temperature.

6. Pass 3 – Calculate Cloud Probability. For each pixel in the scene...

a. If any satellite other than Landsat 8, if this pixel is at the TOA saturation

value for any band, set that band's pixel value to the TOA maximum

value.

b. If pixel is water...

i. Calculate Brightness Probability.

1. brightness_prob = swir1/0.11, clipped to between 0.0-1.0.

2. If using thermal, wtemp_prob = (t_wtemp – thermal

BT)/4.0.

a. If wtemp_prob < 0.0, set = 0.0.

b. brightness_prob = brightness_prob * wtemp_prob

3. If using the cirrus band, then brightness_prob =

brightness_prob + cirrus reflectance/0.04.

ii. wfinal_prob = 100.0 * brightness_prob

c. If pixel is land...

i. Calculate modified NDVI and modified NDSI.

1. NDVI = (r – nir)/(r + nir)

a. If r+nir == 0, set NDVI = 0.01.

2. NDSI = (g – swir1)/(g + swir1)

a. If g+swir1 == 0, set NDSI = 0.01.

3. Clip both NDVI and NDSI to positive values.

a. If less than 0.0, set equal to 0.0.

ii. Calculate whiteness.

1. Calculate Visible Mean

a. visi_mean = (b + g + r)/3.0

2. Calculate Whiteness

a. If (visi_mean = 0.0) then set whiteness = 0.0

b. Else, whiteness = (abs(b + g + r –

visi_mean))/visi_mean

3. If any satellite other than Landsat 8, and any visible band

(R, G, B) is saturated, then whiteness = 0.0.

iii. Calculate probabilities.

1. vari_prob = 1.0 - maximum of (max(abs(NDVI),

abs(NDSI)), whiteness)

2. If using thermal,

a. temp_prob = (t_temph – thermal BT)/(t_temph –

t_templ). (If temp_prob < 0.0, set = 0.0.)

b. vari_prob = vari_prob * temp_prob

3. If using cirrus, then vari_prob = vari_prob + cirrus

reflectance/0.04.

4. final_prob = 100.0 * vari_prob

d. Calculate dynamic land cloud threshold.

i. Threshold clr_mask = 82.5% percentile value of final_probpixels

that are also marked as land_bit.

ii. Add cloud_prob_threshold to clr_mask.

e. Calculate dynamic water cloud threshold.

i. Threshold wclr_mask = 82.5% percentile value of wfinal_prob

pixels that are also marked as water_bit.

ii. Add cloud_prob_threshold to wclr_mask.

7. Pass 4 – Assign confidence levels. For each pixel in the scene...

a. If using thermal and thermal BT < (t_templ + t_buffer – 35.0), then mark

pixel as high confidence cloud and skip the remaining tests.

b. If pixel is water, is marked as cloud, and wfinal_prob > wclr_mask, then

mark pixel as high confidence cloud.

c. If pixel is land, is marked as cloud, and final_prob > clr_mask, then mark

pixel as high confidence cloud.

d. If pixel is water, is marked as cloud, and wfinal_prob > wclr_mask – 10.0,

then mark pixel as medium confidence cloud.

e. If pixel is land, is marked as cloud, and final_prob > clr_mask – 10.0, then

mark pixel as medium confidence cloud.

f. In all other cases, mark pixel as low confidence cloud.

8. Pass 5 – Potential Cloud Shadow mask.

a. Calculate Flood filling Statistics.

i. If any satellite other than Landsat 8, then for each pixel in the

scene, if this pixel is at the TOA saturation value for the NIR or

SWIR1 band, set that band's pixel value to the TOA maximum

value.

ii. Calculate min and max values for both the nir and swir1 bands.

iii. Calculate 17.5% percentile of both nir and swir1 bands.

iv. Use percentile values to create a flood-filled image for both nir and

swir1.

b. For each pixel in the scene...

i. If any satellite other than Landsat 8, then for each pixel in the

scene, if this pixel is at the TOA saturation value for the NIR or

SWIR1 band, set that band's pixel value to the TOA maximum

value.

ii. Shadow probability = minimum of (new nir band or new swir1

band).

iii. If shadow probability > 0.02 (in reflectance units) and the pixel is

not marked as water, then mark the pixel as potential shadow.

Otherwise, mark it as not shadow.

9. Cloud Shadow Detection

a. If scene is less than 10% clear, do not run shadow processing; set all non-

cloud pixels to shadow.

b. Calculate projection angle of clouds to ground.

c. Map cloud pixels to cloud objects, each containing N pixels.

i. Cloud objects with N < 9 pixels are discarded and not used for

shadow calculation.

d. For each cloud object...

i. Set thresholds for cloud shadow matching.

1. If cloud is more than 10% of scene area, t_similar = 0.1 and

t_buffer = 0.98. This allows for more lenient matching of

large clouds that may have shadows outside the scene

borders.

2. Otherwise, t_similar = 0.3 and t_buffer = 0.98.

ii. If using thermal...

1. Calculate the min and max temperature in all pixels of the

cloud as temp_obj_min and temp_obj_max.

2. Estimate cloud radius: rad =
*2

N

3. If cloud radius is less than the minimum valid cloud size

(rad < num_pix), then set cloud temperature t_obj =

temp_obj_min.

4. If cloud radius is greater than the minimum valid cloud

size, calculate pct_obj =
2

2)3(

rad

rad 

a. Calculate t_obj as the pct_obj% percentile of the

temperature (between temp_obj_min and

temp_obj_max). Example: If pct_obj = 0.5, then

t_obj is at the 50% percentile between the min and

max temperatures.

5. Calculate height range.

a. min_height = (10.0 * (t_templ - t_obj) /9.8)

i. Clip min_height to a minimum of 200.

b. max_height = 10.0 * (t_temph - t_obj)

i. Clip max_height to a maximum of 12,000.

iii. If not using thermal, then min_height = 200 and max_height =

12,000.

iv. Calculate step size.

1. i_step = (2.0 * pixel_size * tan(sun_elevation))

2. If i_step is less than 2*pixel_size, clip it to 2*pixel_size.

v. Cloud Height Iteration

1. For each cloud base height (base_h) from min_height to

max_height, in steps of i_step...

a. If using thermal, calculate cloud heights for each

pixel in this cloud object:

i. cloud_height[x] = (10.0*(t_obj –

temp_pixel[x])/6.5) + base_h

b. If not using thermal, cloud_height[x] = base_h.

c. Find the true position of this cloud object using this

trial height and the scene DEM.

d. For each pixel in this cloud, project the pixel onto

the ground

i. i_xy =
)_tan(*_

][_

elevationsunsizepixel

hheightcloud

ii. x' = x + i_xy + cos(sun azimuth)

iii. y' = y + i_xy + sin(sun azimuth)

e. Count up all cloud pixels that are matched with

projected ground pixels that are fill, cloud, or

preliminary shadow as match_all. Also count the

number of pixels projected outside the scene

borders (out_all) and the total number of pixels in

the cloud (total_all). Add out_all to both match_all

and total_all, so as to correct the match weighting

for shadows that may be outside the scene.

f. Search for the first maximum with more than

t_similar% of the cloud pixels matched with a

projected potential shadow pixel on the ground.

But allow for a small percentage of variation before

settling on a maximum. So:

i. Calculate thresh_match =
alltotal

allmatch

_

_

ii. If thresh_match is higher than the record

maxima, set the record to equal the

thresh_match and remember the cloud

heights at this maxima.

iii. If thresh_match is lower than the record

maxima but greater than t_buffer*record,

continue with the next trial height. This is to

allow small variations around the maxima,

in hopes that a greater maxima will be found

later.

iv. If thresh_match is lower than the record

maxima, lower than t_buffer*record, and the

record maxima is greater than t_similar, then

the record maxima is considered best and

the recorded cloud heights are correct.

v. If the record maxima is over 0.95, then

assume it is the best possible match and the

recorded cloud heights are correct.

vi. Once the correct heights are found:

1. Re-calculate the true cloud position

using this height and the scene DEM.

2. Re-project the cloud pixels to the

ground by recalculating i_xy, x', and

y'.

3. For every pixel in this cloud object,

if its projection onto the ground is

marked as potential cloud shadow,

mark that pixel as verified cloud

shadow.

4. Escape the height loop and continue

with the next cloud object.

vii. If thresh_match is lower than the record

maxima and the record maxima is not

greater than t_similar, continue with the next

trial height. This may result in no verified

shadow pixels for this cloud object, if the

t_similar threshold is never reached.

Verification Methods

The CFMask prototype code is being used to generate cloud masks for a standardized set

of data. Masks created by the operational algorithm will be verified by comparison with

the prototype masks of the same data set, and by manual inspection with the imagery to

verify its accuracy in cloud detection.

Maturity

Level 1.

Possible changes that may occur in the CFMask algorithm are:

 Parameter Changes – The internal parameters and thresholds in the CFMask

may undergo further tweaking by the algorithm designers.

 Optimization – The CFMask code is not optimized, and should be looked at

by a developer with an eye toward improving its performance. It may be

possible to combine some passes (pass 1 and 2, or pass 3 and 4) or improve

efficiency in other ways.

 Cirrus options – This ADD describes a version of the CFMask algorithm that

optionally uses the cirrus band in minor calculations. A variant of CFMask

may be created that exploits the cirrus band more thoroughly. If this variant is

intended for production a separate ADD will be created to describe it.

 Output format Changes – The format of the QA band output by the CFMask

algorithm may change.

 Shadow algorithm separability – The shadow-detection algorithm is a separate

piece of code and could be run on any CCA algorithm that outputs a potential

cloud shadow mask. This allows the possibility of running a potential future

algorithm in place of the CFMask early passes. No algorithm candidate for

doing that currently exists, but the potential is there.

Notes

Version 1.07:

Comments to Version 1.05 and answers to questions were noted in Review History

Removed header.

Made the overall introduction text less application specific – CFMask can be formatted

for numerous output types, not necessarily for a specific QA band.

Ensured units are in Celsius for all code; specified Celsius as expected units for thermal

bands.

Added cirrus band to table of inputs.

Removed product table, added short description instead.

Added first step of Procedure section to initiate t_buffer and cloud_prob_threshold

variables with pre-defined values.

Specified that clear_ptm, land_ptm and water_ptm are calculated using all non-fill image

pixels.

Explained that “clr_mask” and “wclr_mask” are calculated using only pixels that are

flagged as “land_bit” or “water_bit”, respectively.

Changed confidence test a, t_templ and t_temph to use t_buffer instead of hard-coded

value (as t_buffer can change.)

Corrected some thresholding typos.

Corrected small typos.

Removed review history.

Version 1.06:

Internal review comments to Version 1.05 with responses and answers to questions were

noted in a section titled “Review History”.

Version 1.05:

Changed 'high' to 'medium' in step 6.e of Procedure section.

Tim Beckmann suggested bringing the cloud height iteration block (step 8.d.v) out into a

new section to improve the formatting, but that doesn't seem possible because it is inside

a cloud object loop (step 8.d). No change was made.

Version 1.04:

Updated description based on slight tweaks to algorithm code (t_obj = minimum if

cloud_radius < num_pix). This corrects some of the questionable behavior described in

the version 1.02 notes below.

Version 1.03:

Added non-thermal and thermal decision points, so that the algorithm can run on data

with or without a thermal band. Also added handling for instruments on Landsats 4-7.

Made changes to resolve questions from version 1.02 (num_pix should be 3.0, low radius

clouds set to minimum temperature). Some questions may still remain and are being

discussed. (Should clouds with r<3 all be clipped to min temp?)

Version 1.02:

Small changes made based on group discussion.

There is one questionable part remaining in the algorithm, the handling of pct_obj, the

temperature percentile of the cloud object. The current behavior is discontinuous,

physically nonintuitive, and a comment in the code suggests that a parameter is wrong.

Here is the value of pct_obj as a function of rad, the radius of the cloud object:

This is questionable because:

a) It is discontinuous. For small clouds (r<3) the temperature rises until it reaches

maximum, then it is forced to minimum at r=1.5. The correct behavior would

seem to be to set small clouds to maximum temperature. (Zhe Zhu has explained

that we cannot trust the instrument to record the temperature correctly for small

clouds, so it is safer to assume they are at minimum cloud temperature. That

works as an explanation, but it still leaves a discontinuous function.)

b) It only appears effective with small clouds. Any cloud with r>3 pixels will

increase in temperature as size increases. This seems physically counter-intuitive,

as large clouds should have peaks at higher altitude and lower temperatures.

Perhaps this is intended to follow some atmospheric temperature profile.

c) While the shape of this curve may be intended, a comment in the code suggests

that the minimum is at too small a value:

float num_pix = 3.0; /* number of inward pixes (240m) for cloud base

temperature */ (object_cloud_shadow_match.c , github code line 361)

If num_pix is intended to be 3 x 240m pixels, then on 30m data it should be a

value of 24.0, which gives a minimum temperature at r=24 or N=3619. This is a

much larger cloud, and clouds smaller than that would increase in temperature

with decreasing size as expected.

Version 1.01:

Introduction added. Several changes made based on commentary from Steve Foga.

Version 1.0:

Initial release.

