LDCM On-Orbit Cal/Val Considerations

Brian Markham
NASA LDCM Calibration Scientist/ Cal/Val Manager
Topics

- Instrument Design Review/Calibration Implications
- Preliminary Orbit and Ascent Plan
 - Under-fly/tandem flying scenarios
- Commissioning Phase
- Calibration Activities
 - Roles
 - Instrument Providers
 - Cal/Val Team/IAS
 - Acquisitions/Maneuvers
 - Analyses/Verifications
- Operations Phase
 - Calibration Activities
OLI Cut-away
TIRS Functional Block Diagram

Legend
- Red: Power
- Blue: Command/Telemetry/Clock/Bias
- Purple: Video Signal/High Speed Data
- Green: Light

- Blackbody
- Scene Select Mechanism
- Telescope Assembly
- Filter Assembly
- Focal Plane Array (FPA)
- Cryoshell
- FPE
- L1, L2, L3, L4
- MEB
- Mech Ctrl
- Thermal
- Power
- HSI
- CDH
- Cryocooler Electronics

- To Deployable Elements
- Space View
- Nadir View
- To Thermal Control
TIRS FPA Architecture

FPA has 1850 unique pixel columns
Corresponds to 185 km swath width
In-track FOV < 5.4 degrees

Filter band locations based on FPA selection. Optimized to best region on FPA.

35 pixel overlap Between SCAs
Preliminary Orbit and Ascent Plan

Requirements:

- **Mission Orbit**
 - LDCM is to operate in a Sun-synchronous, near circular, frozen orbit:
 - Equatorial altitude: 705 ± 1 km altitude
 - Inclination: 98.2 ± 0.15°
 - Eccentricity: ≤ 0.00125
 - MLT-DN: 10:00 a.m. +/- 15 minutes
 - Ground track error: +/- 5 km cross track error at DN (WRS-2 grid)
 - Repeat cycle: 16 days / 233 Orbits

- **Entry operations** into the 705-km Constellation to be coordinated with Earth Science Mission Operations (ESMO)

“Desirements”:

- Locate LDCM relative to Landsat-7 to produce at 8-day scene phasing (i.e. LDCM images same scene 8-days following Landsat-7; same as Landsat-5 orbit)
A 8-day phase shift relative to Landsat-7 combined with an MLT shift to 10:14
- Satisfies the mission requirements
- Satisfies desire to have an 8-day scene phasing
- Places LDCM at a safe distance behind the A-Train
- 40 minutes ahead of L7
- Terra is approximately 25 minutes behind L7
- 7.1 minutes behind the A-Train crossing (behind Aura, the caboose)
Orbit Geometry: 8-day Phase
Preliminary Ascent Plan

Results

- Sun-synchronous, frozen orbit achieved with 4 ascent burns
- Final crossing is 7.1 minutes behind the A-train
- Tandem flying summary
 - ‘Starts’ on Day 38
 - LDCM is 18.5 minutes behind L7
 - Begins flying over the adjacent path to the West of L7
 - Flies on the same path on Day 39 – 40
 - ‘Ends’ on Day 42
 - LDCM is 0.5 minutes behind L7
 - Ends flying over the adjacent path to the East of L7
- Offset due to ~9-minute MLT difference
Orbit Raising Profile

LDCM Mean Semi-major Axis

Tandem-flying
LDCM and L7 Separation (at node crossing)

LS7-LDCM Spacecraft Separation During Ascent

Tandem flying
Target Location and Ascent Planning - Going Forward

- Decide on target orbit location relative to Landsat-7
- Continue developing ascent strategy to
 - Account for variations in geometry for 16 launch dates
 - Characterize the tandem flying conditions and determine how much control we have over the timing after launch during the LEO period (to mitigate for delays in instrument tandem flying readiness)
- Determine optimum injection MLT (and inclination) to account for drift during ascent
- Establish plans for multiple targets to account for multiple possibilities for location of on-orbit assets at time of LDCM launch:
 - Landsat-7 and Landsat-5 both operational (current plan)
 - Landsat-7 operational / Landsat-5 decommissioned (take L5 spot, with L7 MLT)
 - Landsat-5 operational / Landsat-7 decommissioned (take L7 spot)
 - All decommissioned (avoid the A-Train, locate with consideration of follow-on missions)
Commissioning Phase Instrument Activities

- Instrument Suppliers (Ball, TIRS team) lead
 - Activation, focus (OLI)
 - Calibration Acquisitions
 - Update calibration parameters, verify performance
 - Emphasis on geometric performance
 - Changes from pre-launch verifications

- Cal/Val Team shadows instrument suppliers/conduct independent analyses
Preliminary Instrument Activation Plan (OLI)
Commissioning Phase
Calibration Acquisitions-OLI

- Dark Acquisitions (twice/orbit)
 - Shutter closed
 - Long Dark – 40 min (5)

- Calibration Site Imaging (all opportunities)
 - Geometric Super Sites
 - MTF sites
 - Radiometric Sites – (monitored, unmonitored)

- Stim Lamp Acquisitions (working-daily, reference-several, pristine-few)
 - Working – Multiple within-orbit collects, within-day collects

- Solar Calibrations (Prime (~20) and Pristine(~3))
 - Normal, Extended, Linearity Time Sweeps
 - Maneuver required

- Lunar Imaging (monthly)
 - All FPM’s
 - Specific phase angle required
 - Maneuver required

- Side Slither (weekly)
 - Maneuver required

- Stellar Calibration (twice)
 - Maneuver required
Commissioning Phase
Calibration Acquisitions - TIRS

- Blackbody Acquisitions
 - Normal (twice/orbit)
 - Long Collects – 40 minutes (10)
 - Integration Time Sweep
 - Blackbody Temperature Sweeps

- Deep Space Imaging
 - Normal (twice/orbit)
 - Integration Time Sweep

- Calibration Site Imaging (all opportunities)
 - Geometric Super Sites
 - Radiometric Sites

- Lunar Imaging (TBR)
- Side slither (TBR)
On-Orbit Relative Gain Characterization/Calibration

- Intended Primary Methods
 - OLI
 - Solar Diffuser Detector Average Responses – bias corrected (~8 days)
 - Diffuser Non-Uniformity from pre-launch characterization
 - OLI Relative gains from yaw scans of calibration sphere (DSS)
 - Diffuser non-uniformity characterized with OLI as transfer instrument
 - TIRS
 - On-board blackbody and deep space views (2/orbit)
 - Blackbody non-uniformity characterized with TIRS as transfer instrument
- Alternate methods
 - Side-slither—within FPM (monthly to quarterly) – TIRS [TBR]
 - FPM overlap statistics – between FPM’s (acquired every scene)
 - Cumulative Histograms (acquired every scene- analyzed weekly to monthly)
 - Stim lamp statistics – (acquired daily) – OLI only
On-Orbit Absolute Calibration

- OLI
 - Radiance
 - Initial diffuser view versus predicted response from heliostat and atmospheric correction vs instrument assumed stable through launch
 - Validation/check
 - Diffuser reflectance and solar curve
 - Vicarious sites
 - Reflectance
 - Prelaunch measured reflectance of diffuser
 - Trends from *lunar*, diffuser (prime, *pristine*), stim lamps (prime, reference, pristine) and PICS

- TIRS
 - Blackbody and deep space views
 - Validation/check
 - Vicarious sites
Other On-Orbit Radiometric Characterizations

- **OLI**
 - Linearity – Integration time sweeps with solar diffuser and shutter
 - Noise
 - SNR-solar diffuser, stim lamps
 - Coherent and 1/f noise – long darks
 - Stability
 - Long darks, extended solar collects, multiple lamps per orbit, trending

- **TIRS**
 - Linearity –
 - Integration time sweeps with black body & deep space
 - Varying black body temperature over multiple orbits
 - Noise
 - NEdL – black body, deep space
 - Coherent and 1/f – long collects
 - Stability
 - Long collects, trending
The CVT will analyze images of the Lake Pontchartrain causeway to estimate OLI on-orbit edge response slope performance
- Same method used to monitor on-orbit L7 ETM+ MTF degradation
- Single image results are subject to fairly large measurement error
 - ETM+ MTF estimates are repeatable to 3-9% depending on the band
- Will require multiple cloud-free images to obtain meaningful results
- Only provides a performance measure at one location in the OLI FOV
- May provide only a sanity check during commissioning due to small number of usable scenes (depends on cloud cover)

The bridge was found to be too small to be useful for Landsat 7 thermal band characterization so it will not be useable for TIRS

Pontchartrain Causeway
(ALI pan band)
- Lunar scans will also be used to estimate on-orbit spatial performance
 - Technique developed for ALI, but only tested on a few images
 - Provides along- and across-track estimates from the same target
 - Better distribution across the OLI FOV than bridge target (one scan per SCA)
 - Provides results for all bands (including cirrus)
- TIRS will also image the moon
 - May need to work around saturation issues
On-orbit Geometric Characterization and Calibration Sites

On-orbit characterizations are performed using geometric calibration test sites where supporting data are available

- GCPs, DEMs, DOQ or SPOT reference images
- Site distribution is such that at least one site is visible each WRS-2 cycle day and at least 4 sites are visible over any two consecutive WRS-2 cycle days

BATC has been provided with a set of test sites

- The CVT will analyze additional test sites to verify BATC results
Band alignment calibration uses winter season desert sites to align the multispectral bands to the pan band
- BATC special study used Hyperion data to show that this will also work for the cirrus band using sites at suitably high elevation

- Hyperion “Cirrus” Band
- Hyperion “SWIR1” Band
- GloVis Location Plot
Thermal to SWIR Band Registration

Summer
- High temperatures
 => Contrast reversal
- High sun angles
 Fewer shadows

Winter
- Lower temperatures
- Lower sun angles
 More (cool) shadows

Current thermal to reflective band registration performance prediction meets requirement
- Calibration accuracy is a driver

<table>
<thead>
<tr>
<th>Thermal - Reflective Band Registration</th>
<th>Allocation</th>
<th>CBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution</td>
<td>LE90</td>
<td>LE90 Margin</td>
</tr>
<tr>
<td>OLI</td>
<td>5.86</td>
<td>5.29 11%</td>
</tr>
<tr>
<td>S/C</td>
<td>11.77</td>
<td>3.17 271%</td>
</tr>
<tr>
<td>TIRS</td>
<td>12.66</td>
<td>11.27 12%</td>
</tr>
<tr>
<td>Processing</td>
<td>3.88</td>
<td>3.56 9%</td>
</tr>
<tr>
<td>OLI-TIRS Cal</td>
<td>23.49</td>
<td>15.93 48%</td>
</tr>
<tr>
<td>Net</td>
<td>30.0</td>
<td>20.8 44%</td>
</tr>
</tbody>
</table>

all values in meters
TIRS Alignment Calibration

- New algorithm developed for TIRS
 - Combines functions of two OLI heritage algorithms:
 - Focal plane calibration – refine relative locations of SCAs
 - Sensor alignment calibration – determine relationship between instrument and spacecraft attitude control system
- Uses TIRS-to-OLI band-to-band measurements to determine TIRS-to-OLI alignment matrix and TIRS SCA-specific adjustments
- TIRS-to-ACS alignment is determined indirectly as a composite of the TIRS-to-OLI and OLI-to-ACS alignment matrices
 - TIRS-to-OLI alignment knowledge is more important than TIRS-to-ACS alignment since it determines thermal-to-reflective band registration accuracy
A select set of OLI and TIRS geometric calibration parameters will be refined on-orbit if necessary

- LOS model parameters will be updated during commissioning if necessary using OLI focal plane alignment, OLI/TIRS band alignment, and TIRS alignment calibration tools
 - These LOS model parameters will be monitored operationally but are not expected to change frequently if at all
 - L7 band alignment was updated twice on-orbit (after launch and after the scan line corrector failed)
 - The OLI-to-ACS sensor alignment calibration and the TIRS-to-OLI sensor alignment calibration will be updated during commissioning and as necessary operationally to maintain geodetic accuracy performance
 - L7 ETM+ sensor alignment is updated quarterly to compensate for seasonal thermal effects

- Earth orientation parameters are downloaded from USNO and updated quarterly
Operations Phase
Calibration Acquisitions-OLI

- Dark Acquisitions (twice/orbit)
 - Shutter closed
 - Long Dark – 40 min (quarterly)

- Calibration Site Imaging (as available)
 - Geometric Super Sites
 - MTF sites
 - Radiometric Sites (monitored, unmonitored)

- Stim Lamp Acquisitions (working-daily, reference-monthly, pristine-1/6 months)
 - Working – Quarterly within-orbit collects

- Solar Calibrations (Prime (1/8 days) and Pristine(1/6 months))
 - Normal, Extended, Linearity Time Sweeps
 - Maneuver required

- Lunar Calibrations (monthly)
 - Specific phase angle required
 - Maneuver required

- Side Slither (monthly)
 - Maneuver required
Blackbody Acquisitions
- Normal (twice/orbit)
- Long Collects – 40 minutes (quarterly)
- Integration Time Sweep (monthly)
- Blackbody Temperature Sweeps (monthly)

Deep Space Imaging
- Normal (twice/orbit)
- Integration Time Sweep (monthly)

Calibration Site Imaging (as available)
- Geometric Super Sites
- Radiometric Sites (monitored, unmonitored)
Routine Characterizations and Calibrations: Acquisitions

- **Geometric Performance**

<table>
<thead>
<tr>
<th>Acquisition</th>
<th>Band-to-Band Registration (Within & between instruments)</th>
<th>Geodetic Accuracy (Change monitoring)</th>
<th>Spatial Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLI Stellar (Commissioning Only)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OLI Lunar</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Geometric Super-sites</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Spatial Sites</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Radiometric Performance**

<table>
<thead>
<tr>
<th>Acquisition</th>
<th>Detector-to-Detector Relative Calibration</th>
<th>Long Term Stability (Change Monitoring)</th>
<th>Absolute Calibration (Geophys Param Retrieval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLI Dark (Cal Shutter)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OLI Solar Diffuser</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OLI Side-Slither</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLI Lamps</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLI Vicarious Sites</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OLI Pseudo-Invariant Sites</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLI Lunar</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIRS Dark (Deep Space)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TIRS Blackbody</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TIRS Vicarious Sites</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Red - spacecraft operations (maneuver)
Blue - instrument mechanism operations
Black - scheduling only
Routine Characterizations and Calibrations: Acquisitions (con)

- **Geometric Performance**
 - OLI, TIRS Geometric Super Site Acquisitions (every WRS cycle)
 - OLI Stellar Observation (commissioning only)
 - OLI Lunar Observations (~monthly)

- **Radiometric Performance**
 - OLI
 - Shutter (2x/orbit)
 - Lamp (daily-prime; weekly-reference; twice-yearly-pristine);
 - Solar Diffuser (~weekly-prime; twice yearly-pristine)
 - Side Slither (~weekly → quarterly)
 - Lunar (~monthly)
 - Pseudo-Invariant Sites (every WRS cycle)
 - Vicarious (all opportunities during commissioning; quarterly afterwards)
 - TIRS
 - Deep space port observations (2x/orbit)
 - Blackbody Observations (2x/orbit);
 - TIRS monitored sites (all opportunities)