Development of the surface reflectance
Fundamental Climate Data Record from the Landsat archive, the LDCM mission and future Landsats

Principal Investigator
Dr. Eric Vermote
NASA GSFC Code 619

Co. P.I.
Dr. Chris Justice
Department of Geographical Sciences
University of Maryland

Collaborators
Dr. Richard Santer
University of Littoral, Wimereux, France

Olivier Hagolle
CESBIO-CNES, Toulouse, France
Objectives

• to provide an algorithm and code for a Surface Reflectance Standard Product for integration into the LDCM processing system.
• prior to LDCM launch, to test the proposed approach using similar dataset (Formosat-2)
• to validate the resulting LDCM product, using data from AERONET
• to provide a cloud masking and cloud shadow screening algorithm for LDCM
• to undertake vicarious calibration of the LDCM instrument
• to advise on and contribute to the LDCM program outreach and explore the potential synergy with other high resolution international earth observation programs (e.g. through the LCLUC, GLAM GOFC/GOLD and IGOL programs).
• to be an active contributor to the LDCM Team, participating in telecons, science team meetings and working groups as appropriate.
Basis/Rationale for the Landsat Surface Reflectance Product

- The Surface Reflectance standard product developed for MODIS provides the basis for a number of higher order land products for global change and applications research.
- The fully automated and robust approach used for MODIS has been adapted for Landsat missions.
- The code (LEDAPS variation) has been made available to a large community of users and could be delivered to LDCM ground stations.
- Higher order products (LAI/FPAR, Forest Cover Change, Automatic First Stage Classification) have been already generated from SR products.
- Validation/Evaluation plan is clearly defined and underway (AERONET).
- Automatic Quality Assessment and accuracy verification is also achieved (GFCC project).
- Improvements have been implemented (or are underway) in optimized version of the original code (WELD, Google Earth Engine) in particular with aerosol model and use of lookup tables.
Approach for the surface reflectance product

- Atmospheric correction consistent with the MODIS, AVHRR and VIIRS approach, ensuring consistent reflectance data across resolutions based on rigorous radiative transfer

http://6s.ltdri.org
http://rtcodes.ltdri.org/

MODIS AQUA vs MOBY

IKONOS vs TARP

Comparison between measured and retrieved tarp reflectances

\[y = 1.0223x - 0.0007 \]

\[R^2 = 0.9868 \]
Calibration

• MODIS calibration accuracy at ~2%, methods have been developed to cross-calibrate other instruments.
 – MODIS/Terra & ASTER: Simultaneous Nadir Observation
 – VIIRS & MODIS/Aqua: Near simultaneous, (BRDF corrected surface reflectance comparison)
ASTER Calibration

Approach: Use coincident MODIS surface reflectance data (CMG) over desert site to atmospherically correct ASTER (mainly for water vapor, ozone, molecular scattering effect)
ASTER Results for band2 (0.67mic)
ASTER calibration trends for Red (excluding obvious saturation)
Using MODIS to develop global generalized BRDF correction and improved NDVI Time series

RED / NIR

Figure 8a: Time series of the directional surface reflectance over a Savannah site, Kaoma (Zambia).

Noise = 20% and 22%

NDVI

Figure 8c: Time series of the NDVI over a Savannah site, Kaoma (Zambia).

Noise = 5.7%

Noise = 4.2% and 2.8%

Figure 8b: Time series of the directional normalized surface reflectance over a Savannah site, Kaoma (Zambia). The approach used for correcting directional effect is described in [Vermote et al., 2008]

Noise = 2.8%

Figure 8d: Time series of the NDVI corrected for directional effect over a Savannah site, Kaoma (Zambia).
Results for 3/06/2012

Site over Australia:
Data normalized for BRDF effect
(nadir, sun zenith angle= 45deg)
NIR bands: band 2 MODIS, band M7 VIIRS
Theoretical uncertainties for thr surface reflectance MODIS product

- Validation and uncertainties estimates. Theoretical error budget, comprehensive evaluation.

<table>
<thead>
<tr>
<th></th>
<th>FOREST</th>
<th>SAVANNA</th>
<th>SEMI-ARID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Belterra</td>
<td>Skukuza</td>
<td>Sevilleta</td>
</tr>
<tr>
<td>λ [nm]</td>
<td>Clear</td>
<td>Average</td>
<td>Hazy</td>
</tr>
<tr>
<td>470</td>
<td>120</td>
<td>52</td>
<td>51</td>
</tr>
<tr>
<td>550</td>
<td>375</td>
<td>49</td>
<td>55</td>
</tr>
<tr>
<td>645</td>
<td>240</td>
<td>52</td>
<td>59</td>
</tr>
<tr>
<td>870</td>
<td>2931</td>
<td>40</td>
<td>152</td>
</tr>
<tr>
<td>1240</td>
<td>3083</td>
<td>38</td>
<td>110</td>
</tr>
<tr>
<td>1650</td>
<td>1591</td>
<td>29</td>
<td>52</td>
</tr>
<tr>
<td>2130</td>
<td>480</td>
<td>41</td>
<td>28</td>
</tr>
<tr>
<td>$\delta\rho_{\times 10000}$</td>
<td>Clear</td>
<td>Average</td>
<td>Hazy</td>
</tr>
<tr>
<td>849</td>
<td>30</td>
<td>34</td>
<td>40</td>
</tr>
</tbody>
</table>

NDVI $\times 1000$ | ΔNDVI $\times 1000$
| 849 | 30 | 34 | 40 | 471 | 22 | 28 | 33 | 248 | 11 |

Error in ~0.5% in reflectance unit
Comprehensive analysis of performance using the AERONET network 2000-2007 Results (25542 cases)

Version 2 AERONET (i.e. with Background correction and spheroid)
Toward a quantitative assessment of performances (APU)

1.3 Millions 1 km pixels were analyzed for each band.

Red = Accuracy (mean bias)
Green = Precision (repeatability)
Blue = Uncertainty (quadratic sum of A and P)

On average well below magenta theoretical error bar
On going assessment of LEDAPS ETM+ surface reflectance product

- **WELD (D. Roy) 120 acquisitions over 23 AERONET sites (CONUS)**

- **Google Earth Engine : Acquisitions over 120 AERONET sites (global) – In progress going for 300**

- **GFCC: Comparison with MODIS SR products**
 - **GLS 2000 demonstration**

 - **GLS 2005 (TM and ETM+)**
WELD/LEDAPS results (Red-band3)

LEDAPS

WELD uses MODIS aerosol

Top of the atmosphere
(A) GLS 2000 ETM+ vs. MODIS/Terra daily SR
(B) GLS 2005 ETM+ vs. MODIS/Terra daily SR
Landsat/LDCM spatial resolution offer better validation opportunity

\[y = 0.9983x + 0.028 \]
\[R^2 = 0.828 \]

Ground measures Vs Landsat Albedo at 10:30AM
Ground measures Vs MODIS Albedo at LSN

Satellite retrieval (SW-Blue Sky Albedo) for SURFRAD BON site

Courtesy of Feng Gao
The Internal cloud/cloud shadow mask

• Performed in two stages (TOA first / SR second stage)
• Evaluated for 157 Landsat scenes covering a variety of conditions
• Cloud mask comparison
 – ACCA cloud mask
 – SRBM (Surface reflectance Based Mask): Internal cloud mask based on SR product
 – VCM :Truth Validation Cloud Mask (operator made)
• Metrics for cloud detection versus VCM
 – Rate of omission of cloud %: Leakage
 – Rate of commission of cloud % : False detection
• As far as leakage the internal cloud mask, SRBM, is superior to ACCA/ In term of commission ACCA has better performance than SRBM
• SRBM performance were confirmed by the comparison with Zhe et al. Cloud Mask over 143 scenes.
• LEDAPS SRB shadow algorithm needs improvements
LEAKAGE RATE comparison

% Leakage vs. Scene index graph

Legend:
- LEAKAGE SRBM
- LEAKAGE Acca
COMMISSION RATE Comparison

% Commission vs Scene index

- COMMISSION SRBM
- COMMISSION ACCA
Sentinel 2

- Have similar spectral bands than LDCM/Landsat enabling the last version of aerosol retrieval and surface reflectance to be implemented

- Validation protocols are well defined and could be implemented
- Inter-comparison of products should be looked before launch (near coincidence, spectral differences etc…)
- Cf to Gutman/Masek presentation (today 4:30) about and LDCM-Sentinel-2 Data Merging Plans
Cross-comparison of MODIS SR with product derived using independent approach 1/2

Comparison of aggregated FORMOSAT-2 reflectance and MODIS reflectance. No BRDF correction. Density function from light grey (minimum) to black (maximum); white = no data.

Comparison of aggregated FORMOSAT-2 reflectance and BRDF corrected MODIS reflectance. Corrections were performed with Vermote al. (2009) method using for each day of acquisition, the angular configuration of FORMOSAT-2 data.

From Claverie et al., 2013 (in preparation)
Cross-comparison of MODIS SR with product derived using independent approach 2/2

Comparison of simulated FORMOSAT-2 and MODIS reflectance performed with PROSAIL model. The simulated dataset is the same as the one described in Baret et al. (2007).
Conclusions

• Surface reflectance algorithm is mature and pathway toward validation and automated QA is clearly identified.

• Algorithm is generic and tied to documented validated radiative transfer code enabling easier inter-comparison and fusion of products from different sensors (MODIS, VIIRS, AVHRR, LDCM, Landsat, Sentinel 2 …)