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Research Motivation
• Desire to monitor the Earth’s coastal and fresh water supply.
• No environmental satellite to date has the necessary 

characteristics…
– High spatial resolution.
– High radiometric fidelity.
– Repeat Coverage.
– Data are readily accessible.

Rochester Embayment Landsat

Rochester Embayment MODIS
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46 vs. 68 units of chlorophyll

Monitoring Fresh and Coastal Waters

• Spatial Resolution:

• Repeat Coverage:

• Accessible Data

• Radiometric Fidelity:  Significant changes in 
constituent concentrations often lead to small 
changes in water-leaving reflectance.
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Monitoring Fresh Waters

• Case 2 Waters:
– Inland and coastal waters.
– Optically complex case 2 

waters contain significant levels 
of...

• Chlorophyll-a
– phytoplankton

• Suspended Materials
– runoff

• Colored dissolved organic 
matter (CDOM)

– Decaying organic matter

• Issues:
- Determine condition of water through constituent retrieval process.
-Trophic status and trends
- Characterize sedimentation in river plumes.

- Predict beach closings.
- Impact of sediment on the surrounding environment.
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Overview of Research

1

1. Demonstrate that Landsat’s new OLI 
sensor is suitable for studying optically 
complex case 2 waters.
– Radiometric fidelity.

46 vs. 68 units of chlorophyll

Landsat 5: July 13th, 2009
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Overview of Research

Atmospheric Compensation 2 2.  Develop an over-water 
atmospheric compensation 
algorithm for the OLI sensor.

– OLI does not have the 
appropriate spectral coverage to 
utilize traditional water-based 
algorithms.



Landsat 5: July 13th, 2009

Objective 1:
Model the improved features of the OLI sensor 

and demonstrate its improved radiometric 
fidelity.
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OLI Features: Enhanced Spectral 
Coverage

ETM+ Response 

OLI Response
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OLI Features: Quantization

OLI (12-bit)

ETM+ (8-bit)
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OLI Features: Signal to Noise 

ETM+ OLI

• About a factor of 5 improvement in SNR.
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Water IOPs
-Absorb
-Scatter

Modeling the Constituent 
Retrieval Process:  Hydrolight

Wind Speed

Sensor locationSolar location

CHL SM CDOM

x 2000
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Resample Quantize
AVIRIS

ETM+

OLI

Add Noise

Modeling the Constituent 
Retrieval Process:  At the Sensor
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Modeling the Constituent 
Retrieval Process:  CRA
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D
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M

CHL

Top of Atmosphere

Air/Water Interface

CHL=3
SM=4

CDOM=7

CHL
(µg/
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SM(
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CD
OM

0 0 0
.5 .5 .5
1 1 .75
3 2 1
5 4 2
7 8 4
12 10 7
24 14 10
46 20 12
68 24 14
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Resample Quantize CRA
AVIRIS

ETM+

OLI

Add Noise

Modeling the Constituent 
Retrieval Process: Summary

– Average residuals can be expressed as a percent of the total range of constituents. 
CHL [0 – 68], SM [0 – 24], CDOM [0 – 14]

– 10% error is our target for this experiment.
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Results
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SNR Margins
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Results
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Atmospheric Compensation Objective 2:
Develop an over-water atmospheric 

compensation algorithm specifically for 
the OLI sensor.
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• Purpose:  Convert TOA radiances to water-leaving reflectances.
• Issue:  OLI doesn’t have 2 NIR bands which are required by 

traditional water-based algorithms.
– Gordon’s method (SeaWiFS).

• 2 methods developed:
– Blue Band method.
– NIR/SWIR band ratio method.

OLI Approach
Case 2 Waters
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OLI Approach
Case 2 Waters

Atmosphere

Water

)()()()()()( λρλλρλρλρλρ warart T+++=

Atmosphere WaterImage
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OLI Approach
Case 2 Waters

Atmosphere

Dark Water

)()()()()()( λρλλρλρλρλρ warart T+++=

Atmosphere Dark WaterImage
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• Incorporate dark water component into an atmospheric LUT.

OLI Approach
Case 2 Waters

)()()()()()( λρλλρλρλρλρ warart T+++=

Atmosphere Dark Water

• Mid-latitude Summer profile.
• May 20th, 1999.
• Standard gases
• Rural aerosols

• Varied visibility between 5 and 
60 kilometers.

10km

15km

20km

AVIRIS: May 20th, 1999
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10km

15km

20km

• Incorporate dark water constant into an atmospheric LUT.

OLI Approach
Case 2 Waters

Atmosphere Dark Water

)()()()()()( λρλλρλρλρλρ warart T+++=

AVIRIS: May 20th, 1999
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OLI Atmospheric Compensation
Experiment 1: Simulated Data

• Use same 2000 water pixels described in first experiment.
– Propagate to the top of 23 kilometer visibility modeled atmosphere.
– Signals are then spectrally sampled to OLI, half margin noise is added, and 

quantization effects included.
– Average darkest 5% of signals in band 5 to determine atmosphere (22.97km).
– Chosen atmosphere removed spectrally from all modeled pixels.
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• 15% is our target error when atmospheric effects are included.
• A typical scene contains hundreds of thousands of water pixels!

OLI Atmospheric Compensation
Experiment 1: Simulated Data
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• Simulated Image from Landsat 5 data
– Lake Ontario (Dark Water) ROI used to determine atmosphere.
– Chosen atmosphere removed globally from image.
– Constituent retrieval algorithm implemented for 6 ROIs.

OLI Atmospheric Compensation
Experiment 2: Simulated Scene

Landsat 5: May 16th, 1999 Simulated Image
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OLI Atmospheric Compensation
Experiment 2: Simulated Scene

46 vs. 68 units of 
chlorophyll
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• Develop tool to spatially sharpen TIRS data With OLI
– Done

• Use TIRS thermal data to calibrate flow field of hydrodynamic 
model.
– Alge outpus surface temperature
– Proof of concept complete

• Use Landsat reflective data to calibrate color of hydrodynamic 
model.

– ALGE outputs sediment profiles.
– Initial tool under test

• Continue to investigate OLI atmospheric compensation.
– 3 band method, perhaps.

Ongoing



29

Back up
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• AVIRIS data (May 20th,1999) spectrally sampled to OLI’s 
sensor response function.

OLI Atmospheric Compensation
Experiment 3: Real Data

AVIRIS: May 20th, 1999 Simulated OLI Data: May 20th, 1999
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• OLI atmospheric compensation method tested over Cranberry 
Pond and Long Pond.

– Deglint image.
– 200 darkest values in bands 5 and 6 were used to determine atmosphere.
– Atmospheric effects removed and constituent retrieval process performed.

• Empirical Line Method.

OLI Atmospheric Compensation
Experiment 3: Real Data

“OLI” Data

Cranberry Pond

Long Pond
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• Initial errors are discouraging.
– For Cranberry pond, CDOM retrieval is over 20%.
– For Long Pond, retrieval errors for 2 constituents are greater than 30%.

OLI Atmospheric Compensation
Experiment 3: Real Data
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OLI Atmospheric Compensation
Experiment 3: Real Data
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Spectral Average:  Long Pond ROI 
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• More reasonable errors obtained.
– For Cranberry pond, only suspended materials is over 15% retrieval error.
– For Long Pond, retrieval errors for all constituents are less than 15%.

OLI Atmospheric Compensation
Experiment 3: Real Data
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OLI Atmospheric Compensation
Experiment 3: Real Data
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Landsat 5: July 13th, 2009

ALGE Hydrodynamic 
Model

Develop techniques that will enable Landsat data to be 
used to calibrate a hydrodynamic model.

Objective 3:
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Hydrodynamic Modeling: Inputs

• To model the Genesee River plume, ALGE requires information 
from the scene of interest…

– Static: Land/Water, latitude/longitude, bathymetry, voxel size, DOY, etc.
– Dynamic: Environmental Measurements (hourly)

• River data (flow rate, initial temperature)
• Surface data (Pier / Rochester airport)
• Upper air (Bufkit model)

Landsat 5: July 13th, 2009Northeastern United States



38

Hydrodynamic Modeling: Inputs

ALGE Hydrodynamic 
Model

• To model the Genesee River plume, ALGE requires information 
from the scene of interest…

– Nudging Vectors (hourly).
• Whole lake simulation provides nudging vectors for small scale simulation. 

Landsat 5: July 13th, 2009Lake Ontario simulation:  Surface Currents
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Hydrodynamic Modeling: Outputs

ALGE Hydrodynamic 
Model

• To model the Genesee River plume, ALGE requires information 
from the scene of interest…

– Land/Water, latitude/longitude, bathymetry, voxel size, DOY, etc.
– Environmental Measurements (hourly)

• River data (flow rate, initial temperature)
• Surface data (Pier / Rochester airport)
• Upper air (Bufkit model)

– Nudging Vectors (hourly)

Landsat 5: July 13th, 2009
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Hydrodynamic Modeling: Outputs

ALGE Hydrodynamic 
Model

• To model the Genesee River plume, ALGE requires information 
from the scene of interest…

– Land/Water, latitude/longitude, bathymetry, voxel size, DOY, etc.
– Environmental Measurements (hourly)

• River data (flow rate, initial temperature)
• Surface data (Pier / Rochester airport)
• Upper air (Bufkit model)

– Nudging Vectors (hourly)

Landsat 5: July 13th, 2009
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Hydrodynamic Modeling: Steady State

• Run ALGE until model reaches a steady state.
• Satellite data will not match model data…

– Inaccurate inputs.
– Model error.

July 2nd, 2009 July 13th, 2009

Start Model
Stop Model

Landsat 5: July 13th, 2009



42

Hydrodynamic Modeling: Calibration

• 24 hours prior to obtaining satellite data, the model is stopped 
and a calibration LUT created

– Vary environmental parameters (about their nominal values) that will affect a 
plume’s shape.

…
…10 day ALGE run (steady state period)

July 2nd, 2009 July 12th, 2009

1 day (calibration period)

July 13th, 2009

…
Start Model
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Hydrodynamic Modeling: Calibration

• Develop a calibration LUT whose domain is made up of 
parameter variations and whose range is made up of ALGE runs.
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Hydrodynamic Modeling: Calibration

• Nonlinear, least-squares optimizer is used to search the LUT.
– Landsat data must be registered and atmospherically compensated.
– The point in space that provides the best match contains the model that best 

describes the state of the environment.
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Hydrodynamic Modeling: Results

– RMS-error of 0.28 Kelvin.

Expected Optimized
Wind Speed 100% 88.9%

Wind Direction 0.0° 6.1°
Flow speed 100% 61.8%

River Temperature 19°C 19.5°C

Landsat 5: July 13th, 2009 Optimal Model
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• OLI exhibits enormous potential to be used for monitoring 
case 2 waters.

• The ability of the OLI atmospheric compensation algorithms 
were successfully demonstrated on simulated data, a 
simulated image, and a real image.

– The sensor must be well calibrated.
– Adequate SNR must be achieved.

• Techniques were developed which enable Landsat data to be 
used to calibrate a hydrodynamic model.

Conclusions
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